M-Cube: A Millimeter-Wave Massive MIMO Software Radio

Prototype of MCube.

Abstract

Millimeter-wave (mmWave) technologies represent a cornerstone for emerging wireless network infrastructure, and for RF sensing systems in security, health, and automotive domains. Through a MIMO array of phased arrays with hundreds of antenna elements, mmWave can boost wireless bit-rates to 100+ Gbps, and potentially achieve near-vision sensing resolution. However, the lack of an experimental platform has been impeding research in this field. This paper fills the gap with M3 (M-Cube), the first mmWave massive MIMO software radio. M3 features a fully reconfigurable array of phased arrays, with up to 8 RF chains and 256 antenna elements. Despite the orders of magnitude larger antenna arrays, its cost is orders of magnitude lower, even when compared with state-ofthe-art single RF chain mmWave software radios. The key design principle behind M3 is to hijack a low-cost commodity 802.11ad radio, separate the control path and data path inside, regenerate the phased array control signals, and recreate the data signals using a programmable baseband. Extensive experiments have demonstrated the effectiveness of the M3 design, and its usefulness for research in mmWave massive MIMO communication and sensing.

Publication
In Proceedings of ACM MobiCom 2020

Best Paper Award, 2 out of 384 submissions